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Fingering instability in nonadiabatic low-Lewis-number flames
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Employing the formal similarity between the dispersion relations for the hydrodynamic (Darrieus-
Landau) and the diffusive instabilities at the quenching threshold, a phenomenological model for the
nonlinear evolution of the near-limit premixed flame is proposed. Numerical simulations of the model
show that at sufficiently high Zeldovich and low Lewis numbers the cellular flame resulting from the
diffusive instability exhibits a tendency towards self-fragmentation resembling that known to occur in

near-limit low-Lewis-number systems.

PACS number(s): 47.70.Fw, 82.40.Py

I. INTRODUCTION

A spherical flame spreading out from an ignition
source is one of the most basic configurations of premixed
combustion. While such flames are quite feasible in the
laboratory, under certain conditions a nominally spheri-
cal flame becomes unstable and displays an irregular pat-
tern of wrinkles. As is now well established, there are
two principal mechanisms for the intrinsic flame instabili-
ty: (i) thermal expansion of the burnt gas and (ii) high
mobility of the deficient reactant (e.g., Sivashinsky [1]).
The first, the so-called hydrodynamic or Darrieus-
Landau mode of instability, is an invariable feature of any
exothermic premixed gas flame. On the other hand, the
occurrence of the second, the diffusive mode of instabili-
ty, clearly depends on the composition of the mixture.

The outward propagating spherical flame in the regime
of well-developed hydrodynamic instability appears as a
multiple-scale fractal-like pebbly structure (e.g., Filyand,
Sivashinsky, and Frankel [2]). To observe such a
configuration the aspect ratio of the system should be
rather large. For conventional hydrocarbon-air mixtures
under normal pressure this would require the flame to be
of several meters in diameter. In relatively small scale
systems the hydrodynamically unstable flames are either
completely smooth or exhibit a few wide-spaced ridges
that are well maintained even under the deformation and
extension of the flame. Unlike the former, the diffusive
mode of instability manifests itself in the emergence of
the small-scale irregularly recombining cellular structure
and therefore is relatively easily produced under normal
laboratory conditions. In sufficiently reactive, moderate-
ly nonadiabatic mixtures the cell in outward propagating
flames does not increase in size once formed. When the
spacing between cells promoted by the overall flame ex-
pansion exceeds a critical distance the cell splits up into
new cells to keep the flame interface continuous.

However, for mixtures with sufficiently low reactivity,
cells formed shortly after ignition do not sprout new
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cells; instead the expanding flame undergoes self-
fragmentation. In some circumstances the fragments
close up upon themselves to form stationary ball-like
structures (Ronney [3]).

In real situations the hydrodynamic and diffusive insta-
bilities may well coexist. Yet, in theoretical studies they
are often analyzed separately, which is quite justified con-
sidering their distinction both in the physical origin and
the scales involved. Hydrodynamic instability, thus, is
considered mainly for relatively high-Lewis-number mix-
tures where the diffusive instability does not occur. Simi-
larly, the diffusive instability is studied for the constant
density limit, thereby suppressing the instability due to
the thermal expansion.

For a weakly perturbed planar adiabatic flame the per-
tinent dispersion relations read (see, e.g., Sivashinsky [1])

o=LiyU,lk|+(a—1)Dyk? (1)
for hydrodynamic instability, and
o=(a—1)Dyuk*—41% Dy k* )

for diffusive instability.

Here o is the instability rate, k is the perturbation
wave number; 0:=%B(Le_1 —1), where B and Le are Zel-
dovich and Lewis numbers, respectively; y =1—p, /p,, is
the thermal expansion coefficient, with p, and p, being
the densities of the fresh mixture and burnt gas, respec-
tively; D, is the thermal diffusivity of the system; U, is
the speed of the planar adiabatic flame relative to the
burnt gas; /,;, =Dy, /U, is the flame width.

The relations (1) and (2) are written in the limit of weak
thermal expansion (y <<1) and high Zeldovich number
(B>>1) when the system is close to the diffusive stability
threshold, i.e., a=~1.

The geometrically invariant evolution equations for the
flame interface dynamics associated with the dispersion
relations (1) and (2) read (Frankel [4])
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n- dr _ U +(a—1)D.H with our hardware limitations (PC) did not allow us to

dt a th use very fine grids. With the total length reaching, say,

about 3000 units even a step of 1/10 required about

+ iy U, 1+ 1 (L:s-)—.t—l-ds 3) 30000 vertices at the end of the computation. A necessi-

27 TYs |r—s|? ty to operate with several (about 30) arrays of such size

for hydrodynamic instability, and (Frankel and Sivashin-
sky [5(a)])

n-%=—-Uu +(a—1)D K +4l14D H )
for diffusive instability.

Here r and s are the points on the two-dimensional
flame interface, n is the normal directed to the burnt gas
at the point r, /= —V-n is the flame curvature, and #
is its second-order arc-length derivative. In the three-
dimensional (3D) version of the above equations one
should interpret # as the mean curvature of the surface
and ¥ should be replaced by the action of the Laplace-
Beltrami operator A,# (Frankel and Sivashinsky [5(b)]),
whereas in the integral term the coefficient becomes 1/27
and the denominator of the integrand is |r—s|? (Frankel
[4].

Below we present some results of numerical simulation
of the geometrically invariant equations (3) and (4).

II. NUMERICAL SIMULATION

Before we discuss the results of simulation of Egs. (3)
and (4) a few words are due with respect to the numerical
method used in it. After experimenting with various ap-
proaches we found that the most efficient for our situa-
tion is the most straightforward one. Namely, the equa-
tions were left in their original invariant (geometrical)
form, the derivatives with respect to the arc length were
evaluated explicitly by weighted finite differences, and the
integral term was evaluated by the trapezoid method.
We also used a split time step separating the action of the
integral and the differential part of the operator.

Since we had to deal with rather large curve lengths
and a huge number of integrals for each time level, the
step of integration along the curve was scaled appropri-
ately for the distant (from a given position r; on the
curve) pieces of the curve. This is possible in view of the
decay of the interaction inversely proportional to the dis-
tance. In a sense, it is similar to integration with respect
to the angle without being concerned with overlapping,
which certainly occurs due to extremely complex
behavior of the front.

At the same time the discrete curve representation by a
polygon was homogenized with respect to the arc length
to preserve an approximate fixed and equal spacing after
every time step via a polynomial interpolation. The effect
of homogenization turned out to be negligibly small when
compared with the action of either part of the operator
especially for the appropriately small time step, which
was required anyway by the explicit finite-difference
scheme. We should also add the polynomials of different
degrees and types used in the interpolation produced
qualitatively identical results even for very large times.

The explicit finite-difference approximation combined

pushes the PC to its limit during the actual computation
as well as with regard to the graphical presentation of the
results. We should remark that the exponential growths
of the total length exhibited by the fingering solutions of
Eq. (4) would create similar difficulties even with a super-
computer that does not allow a considerable increase in
evolution time unless a massively parallel code is used.

We verified our algorithm using a half-step grid and an
appropriate time step, and, independently, a finer time
step for each particular case. The results were qualita-
tively consistent and even quantitatively so for moderate
times. We also tested our scheme for a combination of
Egs. (3) and (4) modeling roughly both the hydrodynamic
and the diffusive instability in flames, and it seemed to
produce reliable results consistent with physical predic-
tions whenever such verification was possible. Additional
verification of reasonable reliability of the numerical
scheme is provided by a consistent simulation of Eq. (4)
in the range of parameters where it leads to self-
intersections producing fractal-like exponentially stretch-
ing curves that tend to cover the plane everywhere dense-
ly (Frankel [17]). One should think that successful per-
formance of even such a simple straightforward computa-
tional method as ours should be attributed exclusively to
the benign mathematical nature of Egs. (3) and (4).

We should finally remark, before presenting the results,
that, although the numerical approach used in the
current work is sufficiently reliable to pinpoint the major
effects discussed below, a real quantitatively accurate
simulation would require a more sophisticated numerical
approach and hardware. It should be added, however,
that numerical methods for surface dynamics equations
of the above type are a relatively new field of computa-
tional mathematics and still represent somewhat of a
challenge and a serious one in the case of surfaces in the
3D space. Our computational ambitions, however, do
not go that far.

Figure 1 presents results of the numerical simulation of
Eq. (3) for y=0.8 with (1—a)Dy/U, and
(1—a)Dy, /U? used as units of length and time. In these
scales ¥ remains the only parameter of the equation

n-£—=—1+ﬁ+—§ 1+ 1 (r—s)n

- el Pl PCY

For convenience we have additionally rescaled both time
and spatial coordinates by the factor of 10. Thus the di-
mensions and the times of the front configurations in Fig.
1 are 1/10 of the real ones.

A regular smooth perturbation of a very small ampli-
tude is imposed on a nearly circular initial front, which
results in a rapid development of well-pronounced wrin-
kles and cusps. The front configuration develops a
fractal-like structure involving larger scales as it expands
with constantly increasing speed.
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FIG. 1. Numerical simulation of Eq. (3) for hydrodynamical-
ly unstable flame (y =0.8). Front configurations for ¢ /10=30,
60, 90, 120; r /10=(X, Y).

Figure 2 depicts results of numerical simulation of Eq.
(4) for @a=1.3 with (a—1)D, /U, and (a—1)D,/U?
used as length and time scales. In these scales
8=4/(a—1) remains the only parameter of the equation

dr

n'I=—l+7{+5ﬁss . 4"

Once again the dimensions and the times of the front
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FIG. 2. Numerical simulation of Eq. (4) for diffusively unsta-

o

ble adiabatic flame (a=1.3). Front configurations for
t/10=100, 150, 200; r/10=(X, Y). Inset: a magnified segment
of the last position of the front.

configurations in Fig. 2 are 1/10 of the real ones. The in-
itially circular front develops a weak [in comparison with
solutions of Eq. (3)] turbulent-cellular structure. The typ-
ical cell size as well as approximately circular general
shape are sustained for all times and larger scales do not
occur. One can observe a relatively small jump in the
propagation velocity at the onset of the diffusive instabili-
ty, which remains at the average new level without in-
creasing any further.

III. EFFECTS DUE TO HEAT LOSSES

As was mentioned earlier the heat losses may dramati-
cally enhance the impact of the diffusive instability lead-
ing to the flame self-fragmentation and formation of
flame caps or balls. The latter as has been recently shown
by Buckmaster, Joulin, and Ronney ([6,7]) may survive
even beyond the planar flame quenching threshold.

For the moderately nonadiabatic flame the dispersion
relation (2) is modified to (Joulin and Clavin [8], Sivashin-
sky and Matkowsky [9])

a—1—2lnyu
1+2lnu

U=Dth 2

4+2lnu

k*, (5)
p*(1+21ny)

_Dthlfh

where U=pU, is the speed of a planar nonadiabatic
flame. The factor u is determined by the relation

v=u’n(1/u) , (6)

where v is the heat-loss intensity.

As one approaches the planar flame propagation limit
(u—1/V'e ) the instability region expands. Simultane-
ously one observes a sharp increase in the instability rate
o.
In the vicinity of the quenching point the asymptotic
relation (5) is clearly not valid and requires an appropri-
ate modification. In particular, precisely at the quench-
ing point the unstable branch of the pertinent dispersion
relation reads (cf. Joulin and Clavin [8], Sivashinsky and
Matkowsky [9], Joulin and Sivashinsky [10])

0=17qU,lkl—=Dyk?, @)

where U, =U,/ Ve is the flame speed at the quenching
point; ¥.;=V4a/a+6. The analysis presented in
Sivashinsky and Matkowsky [9] and Joulin and Sivashin-
sky [10] pertains to the limit of small a.

As is readily seen the latter relation is formally identi-
cal to that of hydrodynamic instability (1). Due to the
functional similarity on the linear level one may try to ex-
trapolate it on the nonlinear dynamics as well where hy-
drodynamic instability enjoys rather a well founded evo-
lution equation (3). Hence, for the threshold flames, the
following model equation is proposed:

dr

n.Ti? = Uq +Dth-7{

S 20ds | . 8)
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FIG. 3. Numerical simulation of Eq. (8) for a diffusively un-
stable flame at the quenching threshold (y.=1.5). Front
configurations for ¢t/3=60 (dotted line), t=67 (thin line), and
t=74,r/3=(X,Y).

We observe that while the thermal expansion parameter
v of Eq. (3) never exceeds unity, its counterpart y . in
Eq. (8) may come rather close to 2 provided the parame-
ter a=1pB(Le ! —1) is large enough.

Numerical simulations of Eq. (8) presented in Fig. 3
(times and scales correspond to 1 of the real ones), show
that at y > 1 the latter yields quite a plausible picture of
the incipient stage of the flame self-fragmentation, which
in its appearance resembles the so-called fingering insta-
bility typical for many other nonequilibrium systems in-
volving interfaces. The bases of the fingers, once they are
formed, remain close to their initial positions while the
finger tips (cells) rapidly move forward. There is, howev-
er, some differences between the subsequent finger-tip
evolution and the actual dynamics of the flame self-
fragmentation.

According to the experimental observations the indivi-
dual cells retaining fixed size move far apart from each
other, finally turning into quite autonomous spherical or
hemispherical flamelets (Ronney [3]). On the other hand,
the finger tips produced by Eq. (8) gradually swell up,
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which eventually leads to the interface self-crossing. This
discrepancy may apparently be attributed to the phenom-
enological nature of the model (8), which may well lack
certain important features inherent to the real near-limit
systems. A more systematic approach based on the un-
stable as well as stable branches of the pertinent disper-
sion relation, however, is likely to require a coupled set of
equations both for the flame interface and its temperature
(Joulin and Sivashinsky [10]).

IV. CONCLUDING REMARKS

Equation (8) corresponds to the planar flame quench-
ing threshold and is, therefore, not applicable for the
flame dynamics beyond this point where combustion may
still survive in the form of corrugated or cap and ball-like
structures. The pertinent weakly nonlinear model was
proposed by Joulin and Sivashinsky [10]. Yet, our recent
numerical simulations of the model showed that apart
from the well behaved stable cellular configurations de-
scribed by Joulin [11] and Sinay and Williams [12,13], un-
der certain initial conditions one may well end up with a
rapidly decelerating corrugated flame where effective
speed backs off to minus infinity within a finite time inter-
val. This outcome is likely to be just a reflection of the
fingering character of the near limit instability whose uni-
form description requires involvement of the higher-
order geometrical and perhaps reaction rate nonlineari-
ties as well. A rational resolution of this issue will be at-
tempted in a future work.

Models formulated in terms of the flame interface
evolving in the physical space by their very nature are
valid only up to the moment of the flame self-
fragmentation. Beyond this point one is likely to obtain a
self-crossing interface—a situation which should clearly
be regarded as a mathematical artifact. To circumvent
this difficulty one may try the scalar field, the so-called G
equation, approach (Kerstein, Ashurst, and Williams
[14]), which proved to be rather effective in the descrip-
tion of the flame fragmentation induced by the underly-
ing vortical flows (Ashurst and Sivashinsky [15] and Al-
dredge [16]).
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